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Figure 1. Our approach “ConTex-Human” can achieve texture-consistent free-view human rendering with high-fidelity using only a single
image on different datasets. The left two are from SSHQ, right two are from THuman2.0. (Check project page for more visual results.)

Abstract

In this work, we propose a method to address the chal-
lenge of rendering a 3D human from a single image in a
free-view manner. Some existing approaches could achieve
this by using generalizable pixel-aligned implicit fields to
reconstruct a textured mesh of a human or by employing
a 2D diffusion model as guidance with the Score Distil-
lation Sampling (SDS) method, to lift the 2D image into
3D space. However, a generalizable implicit field often re-
sults in an over-smooth texture field, while the SDS method
tends to lead to a texture-inconsistent novel view with the in-
put image. In this paper, we introduce a texture-consistent
back view synthesis module that could transfer the refer-
ence image content to the back view through depth and
text-guided attention injection. Moreover, to alleviate the
color distortion that occurs in the side region, we propose
a visibility-aware patch consistency regularization for tex-
ture mapping and refinement combined with the synthesized
back view texture. With the above techniques, we could

achieve high-fidelity and texture-consistent human render-
ing from a single image. Experiments conducted on both
real and synthetic data demonstrate the effectiveness of our
method and show that our approach outperforms previous
baseline methods.

1. Introduction

Free-view human synthesis or rendering is essential for
various applications, including virtual reality, electronic
games, and movie production. Traditional approaches of-
ten require a dense camera rig or depth sensors [5, 9] to re-
construct the geometry and refine the texture of the subject,
resulting in a tedious and time-consuming process.
Recently, with the advent of implicit fields, remarkable
progress has been made in 3D human free-view synthesis
from a single RGB image. Several methods [43, 44, 57] ac-
complish this by using pixel-aligned 2D image features as
input conditions for subsequent occupancy and color pre-
dictions of corresponding 3D points. These methods ex-
tract a mesh from the implicit field and predict the vertex
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colors for free-view rendering. Other works [11, 14, 20]
construct generalizable human neural radiance fields trained
on multi-view images, enabling the recovery of 3D humans
from a single input image during testing. However, both
of these methods tend to produce over-smooth and less fine
details due to the smoothness bias of implicit fields and the
challenge of inferring the geometry and texture of the entire
body from just a single input. To forecast the invisible areas,
some methods [28, 39, 48] incorporate a 2D text-to-image
diffusion model as guidance and conduct score-distillation-
sampling (SDS) to optimize a 3D representation from a sin-
gle image. This approach can also be applied to human im-
ages, as shown in our concurrent work TeCH [16]. Nev-
ertheless, the SDS methods tend to produce over-saturation
predictions and may not achieve texture-consistent results
with the input reference image in the invisible areas, es-
pecially for back view images, even when an accurate text
prompt is given.

In this paper, we aim to achieve high-fidelity, texture-
consistent human free-view rendering using only a single
input image, as shown in Figure 1, which presents sig-
nificant challenges. We propose an innovative framework
named “ConTex-Human”. Under this framework, we de-
compose our ultimate goal into two key sub-targets. The
first one involves generating a texture-consistent back view
with fine details. The second sub-target is to paint the side
and invisible region with reasonable texture after mapping
the input reference and back view onto the reconstructed
geometry.

For back view synthesis, we draw inspiration from recent
2D image/video editing methods [3, 29, 38, 50], which are
capable of preserving the style and texture of the original
image during the editing process. Our key idea is to query
image content from the input reference image to generate a
texture-consistent human back view through attention injec-
tion, guided by text prompts. However, naively generating
the back view using only text prompts would lead to mis-
alignment between the back view image and human geom-
etry. Therefore, we control this process with the depth map
as guidance to ensure that the generated back view layout is
well-aligned with human geometry.

In addition to mapping the reference and back view im-
ages onto the geometry representation during the optimiza-
tion, we also need to paint the side region and invisible re-
gion. An intuitive solution would be to perform the SDS
method on the given person, leveraging the 2D Diffusion
model prior. However, only using the SDS loss results in
color distortion and over-saturation of texture. To address
this problem, we propose a visibility-aware patch consis-
tency loss that mitigates the inconsistent side view texture.
This approach ensures that the pixel values in the side and
invisible regions are close to their neighboring pixels in the
front or back regions.

We evaluate our approach on both the synthetic dataset
THuman2.0 which has 3D textured scans as ground truth
and the real dataset SSHQ which includes people in various
poses, clothing, and shapes. Across the experiments, our
approach exhibits significant performance in both quantita-
tive and qualitative comparisons.

In summary, the contributions of our paper are listed as
follows:

* We present an innovative framework called “ConTex-
Human”, which could achieve high-fidelity free-view hu-
man rendering with consistent texture using single image.

* We design a depth and text prompt conditioned back view
synthesis module that could maintain texture style and de-
tails consistent with the reference image

* We proposed a texture mapping and refinement module
with a visibility-aware patch consistency loss to synthe-
size the consistent pixels in invisible areas.

2. Related Work
2.1. Single Image Human Recon. and Rendering

Reconstructing and Rendering 3D humans from a single
image is an ill-conditioned problem that necessitates infer-
ring the geometry or even appearance of the whole body
with only one observation. Therefore, a strong prior is usu-
ally required to address this issue. Traditionally, parametric
body models such as SMPL [26] are used to estimate the
shape and pose from a single image [2, 12, 19, 22, 34, 36].
However, the SMPL mesh representation fails to model
complex topologies like dresses and hair. Recently, im-
plicit representations such as NeRF [32], occupancy [30],
and SDF [35] have shown impressive results with the abil-
ity to model arbitrary topologies and are used to model
3D clothed humans [1, 11, 17, 23, 43, 44, 51, 52, 57].
Some of these works focus on the reconstruction of ge-
ometry [6, 44, 51, 52], while PIFu [43], PAMIR [57],
ARCH [17], PHORHUM [1] and S3F [6] would also predict
the texture from the image for novel view synthesis. A com-
mon limitation of these methods is the requirement of large-
scale accurate 3D textured scans as training data. They
also tend to predict blurry and over-smooth texture. Re-
cently, with the emergence of large pre-trained models like
CLIP [40] and Stable Diffusion [41], these model priors are
also utilized to guide human reconstruction. ELICIT [15]
utilizes the 3D body shape geometry prior and the visual
clothing prior with the CLIP models to create plausible
content in the invisible areas of animatable avatar. And
TeCH [16] gives the descriptive prompts to the personalized
text-to-image diffusion model to learn the invisible appear-
ance through Score Distillation Sampling. Due to the lim-
ited expressive ability of text prompts, TeCH suffers from
inconsistent texture in the generated areas. In this work,
we could reconstruct texture-consistent 3D humans with the



help of our texture-consistent back view synthesis method.
2.2. Image-to-3D Generation

Recent text-to-image synthesis has achieved high-fidelity
generation results benefiting from diffusion models [13, 46]
and large aligned image-text datasets. Based on the pre-
trained 2D diffusion model, DreamFusion [37] proposes
a Score Distillation Sampling (SDS) method that replaces
CLIP models in Dream Fields [18] with the SDS loss to
distill 3D models from the text prompt. After that, SDS is
widely used in later text-to-3D works [4, 24, 31, 49, 56, 58].
Inspired by text-to-3D works, image-to-3D that recon-
structs 3D models from a single image has also been ex-
plored [8, 28, 39, 48, 54]. Specifically, NeuralLift-360 [54]
derives a prior distillation loss for CLIP-guided diffusion
prior to lift a single image to a 3D object. RealFusion [28]
and NeRDi [8] optimize the NeRF representations by min-
imizing a diffusion loss on novel view renderings with a
pre-trained image diffusion model conditioned by a token
inverted from input image. Recently, Make-it-3D [48] em-
ploys a two-stage optimization pipeline that builds textured
point clouds to enhance the texture in fine stage, yield-
ing high-quality 3D models according to the given image.
Magic123 [39] proposes to use Stable Diffusion [41] as the
2D prior and viewpoint-conditioned diffusion model Zero-
1-to-3 [25] as the 3D prior simultaneously for SDS loss to
generate 3D content from a given image. However, these
methods can only address objects with simple geometric
structures and textures. For models with more complex ge-
ometry and texture, such as 3D humans, obvious artifacts
and inconsistent texture would emerge in invisible parts.

3. Preliminary

Recently, DreamFusion [37] has revolutionized the text-to-
3D field by proposing the score distillation sampling (SDS)
method, which shows that 2D text-to-image diffusion mod-
els like Imagen [42] and StableDiffusion [41] can be lifted
to generate 3D objects base on the text prompts without 3D
data. It uses the 2D diffusion model to guide the text-to-
3D generation process by optimizing a neural radiance field
with a SDS loss that is described as follows:
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where y is the given text prompts, x is the rendered im-
age from the 3D representation, x; is the noisy latent after
adding Gaussian noise € to x, € is the predicted noise, w(t)
is the weight function of different noise levels, 6 is the pa-
rameters of 3D representations, which is NeRF in Dream-
Fusion.

The SDS loss is not only widely used in text-to-3D tasks
but also garners significant attention in image-to-3D ap-
plications. To learn rich 3D priors from large-scale 3D

datasets, such as Objaverse [7], Zero-1-to-3 [25] trains a
viewpoint-conditioned diffusion model capable of synthe-
sizing novel views in a feed-forward manner. Given a single
image and a target camera pose {R, T} as input, Zero-1-to-
3 can synthesize the corresponding novel view according to
the given viewpoint. Furthermore, it can also be employed
to guide the optimization of the image-to-3D process using
a modified version of the SDS loss, formulated as:
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where I" is reference image, I is rendered novel view. In
this work, we use both of them in different stages.

4. Method

Given a single RGB image of a human, our objective is to
reconstruct the 3D representation that could render high-
fidelity images of the human from various viewpoints. Our
approach only requires an RGB image and its foreground
mask, which can be easily obtained using an off-the-shelf
background removal tool. Our method is illustrated in Fig-
ure 2 and consists of three main stages. We first employ
the 2D diffusion model to lift the input human image to a
radiance field in the coarse stage (Section 3.1). Next, we in-
troduce a depth and text-guided attention injection module
from the reference to synthesize a texture-consistent image
in back view (Section 3.2), serving as essential information
for the subsequent stage. Finally, we propose a visibility-
aware patch consistency loss to reconstruct a 3D mesh for
high-quality rendering in the fine stage (Section 3.3).

4.1. Coarse Stage: Radiance Field Reconstruction

Recent image-to-3D generation methods [28, 39, 48] that
lift a single image into a 3D object often adopt Stable Dif-
fusion (SD) as the diffusion prior. However, we found that
the SD guidance frequently results in a tedious optimiza-
tion process and most importantly, would lead to inconsis-
tent multi-head problems in the optimized 3D object due to
data bias in training data of the diffusion model. In the con-
text of 3D humans, this issue can even generate multi-arm
and multi-leg geometries for simple poses, let alone han-
dling complex and diverse human poses. To address this
problem, we employ the SDS loss based on the Zero-1-to-3
model as the diffusion prior as shown in Eq.2 to optimize
an Instant-NGP [33] representation.

To optimize the 3D representation, We first employ
Lmask between the mask Mr extracted from the input im-
age and the rendered mask M, in the front view to restrain
the human area in 3D space:

Emask = ”Mr - 1{/-[r”l (3)
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Figure 2. Overview “ConTex-Human”. Our framework is composed of three main stages. (/)Coarse Stage. Given a human image as
reference, we leverage view-aware 2D diffusion model Zero123 to conduct Score Distillation Sampling (SDS) to optimize a NeRF. Refer-
ence view RGB and normal supervision are also added. (2)Back view Synthesis Stage. Coarse image and depth map are utilized to generate
texture-consistent and high-fidelity back view. (3)Fine Stage. We convert NeRF to DMTet Mesh and optimize mesh with front/back normal
map. Texture field is optimized with front/back image, Zero123/Stable-Diffusion SDS, and visibility-aware patch consistency loss Lo pc.

In front view, RGB loss is calculated to penalize the d~iffer-
ence between the input image I, and rendered results I,:

Lrgy = I @M, — I, © M, | 4)

In addition, to enforce better geometry and accelerate the
training process during optimization, we also incorporate a
reference normal constraint for the normal map rendered in
the front view. The reference normal is estimated using the
normal estimator proposed in ECON [53]. Therefore, the
normal lgss between the reference normal A/, and rendered
normal A/, is formulated as:

»Cnormal = ||Nr®Mr_Nr®MrH1 (5)

The overall loss for the coarse stage can be formulated as a

combination of Ejéfi)’, Limask Lrgy and Lyormai.

4.2. Texture-Consistent Back View Synthesis

Although current image-to-3D methods can generate plau-
sible results for invisible areas for the input image, the
results tend to be over-saturation, over-smooth, style-
inconsistent, and low quality due to the lack of awareness
of the input image during synthesizing other areas. Inspired
by the recent 2D image editing methods that could maintain
content and details of source images during the synthesis
and editing process. Our key idea is to query image con-
tents from the input reference image I, and integrate them
to synthesize the back view image I}, while maintaining the
consistent texture details, this process is guided by the text
prompt T and depth map D.

Depth map D is able to guide the layout of the I},, which
is essential for the fine stage to map the texture onto the
geometry seamlessly. Text prompt T depicts the human in-
formation style such as gender, hair color and style, cloth-
ing color and type, etc. Based on the guidance, we propose
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Figure 3. Illustration of texture-consistent back view synthesis.
We firstly encode the reference image through SD-Depth encoder
to latent code x¢. Then DDIM inversion [47] sampling is con-
ducted to get start code 7. The back view is synthesized from
7 through our attention injection method, which is modulated by
the depth map.

a depth and text-conditioned texture-consistent back view
synthesis module, which utilizes the pre-trained Depth-
Conditioned Stable Diffusion model and synthesizes a much
more highly detailed back view image than the previous
methods.

Our texture-consistent back view synthesis module is
shown in Figure 3. We firstly encode the original front im-
age I. through SD encoder to a latent code xy. Then the
DDIM inversion [47] sampling is conducted on o which
is concatenated with the front view depth D,. iteratively to
get the start noise latent code . For the back view syn-
thesis, xr is copied as the start noise latent code of the
back view image, which is concatenated with the back view
depth Dy, for the subsequent DDIM sampling. Utilizing D,
as conditional information to control the layout, the gener-
ated back view is well-aligned with both the coarse stage
NeRF and the fine stage Mesh. Moreover, we incorporate
the phrase “back view” into the original text prompt T to



guide the back view synthesis through cross-attention in the
SD model.

In addition to the back view synthesis, the front view
synthesis process from 7 and D,. is also conducted simul-
taneously. During the back view and front view synthesis,
for the specific time step ¢, we employ an attention injec-
tion method to transfer the key feature K,. and value feature
V.. in attention layers from the front view branch to the back
view branch. In the meanwhile, the back view branch main-
tains its original query feature Q, in attention layers. The
attention feature transfer is performed iteratively to synthe-
size the back view. With these proposed operations, the de-
tailed texture from the front view image can be transferred
to the back view, simultaneously, maintaining the back view
depth layout that is view-consistent with the front view ge-
ometry and being well aligned in accordance with the orig-
inal text description.

4.3. Fine Stage: High-Fidelity Mesh Reconstruction

The coarse stage generates only a rough geometry and low-
quality texture, represented by a density field and a color
field. Therefore, we introduce a fine stage to refine the ge-
ometry and texture from the coarse stage by utilizing the
content details in the reference image and generated the
back view image from our method. Compared to recent
works [16, 39, 48] that employ the SDS loss to optimize
the full texture which could suffer from over-saturation,
blurriness, over-smoothing, and style inconsistency in the
generated areas. Our solution, which maps the generated
back view that is style and texture-consistent with the front
view onto the refined geometry, combining the proposed
visibility-aware patch consistency regularization, achieves
more 3D-consistent and high-fidelity results.

4.3.1 Geometry Reconstruction

We adopt DMTet[45], a hybrid SDF-Mesh representation,
for the reconstruction in the fine stage, which is capable of
generating high-resolution 3D shapes and allows for effi-
cient differentiable rendering. To initialize DMTet, we set
the SDF value of each vertex v; using the density field from
the coarse stage, and the deformation vector Awv; is set to 0.
During geometry optimization, a triangle mesh is extracted
from DMTet. We employ a differential rasterizer [21] to
render the normal map from a given viewpoint.

To regularize the geometry during optimization, we also
employ a normal constraint as in the coarse stage. One
straightforward way is to estimate the normal maps of both
the front and back view from the reference image as the su-
pervision using an existing normal estimator in ECON [53].
However, alignment issues arise between the estimated back
view normal and the reconstructed geometry due to the dif-
ferent camera settings. In view of this, we alternatively

adopt the estimated back normal N, from the synthe-
sized texture-consistent back view that is generated in Sec-
tion 4.2. This normal is well-aligned with our initialized
geometry and synthesized back view.

Given that the reference view normal and back view
normal encompass most of the human region, a reason-
able transition between the reference and back views can
be achieved after applying mesh normal smoothness and
laplacian smoothness constraints. Finally, the geometry re-
construction loss in the fine stage can be written as follows:

Lgeo = ||Nr _NrHQ + HNb _NbH2 + Esmooth

where A/ r and N b are the rendered mesh normal maps us-
ing Nvdiffrast [21], respectively. N, and Ny, are the refer-
ence and back view ground truth normal maps, respectively,
estimated using ECON [53] normal estimator for the refer-
ence image and generated back view image.

4.3.2 Texture Mapping and Refinement

After the geometry reconstruction in the fine stage, the next
step is to generate texture by mapping the reference front
image I, and the generated back view image Iy, to the re-
fined geometry. Similar to [24], we adopt an Instant-NGP to
represent the 3D texture field. For each pixel x; in the sam-
pled image, we first calculate its ray-mesh intersection’s 3D
position p;. Then a latent feature is interpolated from the
Instant-NGP feature grid and is fed to a tiny layer MLP net-
work to decode a color value. The texture field is first regu-
larized using the front reference image I, and the generated
back view image I}, as the supervision:

Logs = |Te — Iell2 + | Tb — Inl2 (©6)

where I, and Iy, are the rendered front and back images
from the texture field, respectively.

Although the front and back view images could cover
most of the texture for the human, there are still some miss-
ing textures in the side view and self-occluded region. To
complete the missing texture, similar to [39], we adopt a
SDS combination of both Stable-Diffusion and Zero-1-to-3
models to optimize the texture field:

‘Csds = )\1/3;35 + )‘2£§3{33 (7)

The combined SDS loss can fill the missing region guided
by text prompts. However, in many cases, there is an obvi-
ous texture transition and inconsistent style in the filled part
between the front and back view images. To address this
problem, we propose a visibility-aware patch consistency
loss for refinement, which could alleviate the inconsistent
side view texture as shown in Figure 4. To be specific, for
each pixel in the front view image and back view image, we
find its intersection with the corresponding mesh triangle



face through rasterization. The vertices on the face closest
to the intersection are set to 1, indicating that they are vis-
ible to I, or Ij,. Vertices that are invisible to I,. and Iy, are
set to 0.

Sample PM in M. Sample P'in 1.

Figure 4. Illustration of visibility-aware patch consistency loss
Loype. After mapping the front/back view to the geometry, we con-
duct SDS to complete side and invisible region. To remove the
color distortion caused by SDS, we sample random patches P’
which are divided into visible region P. and invisible region P!.
The L. is calculated between regions.

Our key insight is that the pixels in the invisible region
should have a consistent color with their neighbor visible
pixels within a patch. To achieve this, we first sample a ran-
dom viewpoint in camera space and render an RGB image
I and its visibility map M. Then we sample a random patch
P! in T and its visibility map P in M. In this patch, the
invisible pixels P! can be calculated by (P! = PT * pM),
and the visible pixels P/ can be calculated by (P! = P! *
PM). Then we calculate the visibility-aware patch consis-
tency loss as follows:

Lope = min[lp—q|? )
peP! v
The overall loss for the texture mapping and refinement
can be formulated as a combination of L, 45, Ls4s and Ly ..
Due to space constraints, we will provide more implemen-
tation details in the supplementary materials.

5. Experiments
5.1. Datasets

We describe the human datasets used in the experiments,
including a synthetic dataset rendered by 3D textured scans
THuman2.0 [55], and a real dataset with high-quality full-
body human images, SSHQ [10].

THuman2.0 is a 3D human model dataset that contains
500 high-quality human scans captured by a dense DSLR
rig. For each scan, it provides a 3D model along with the
corresponding texture map. In all 500 static scans, the same
person might appear multiple times with different poses and
clothes. As our method is person-specific, evaluating all the
data would be a tedious process. Therefore, we selected

30 subjects with different identities, poses, and clothes for
evaluation. For each subject, we used the front view as the
input for our method. To evaluate our method, we rendered
ten views that surround the center human as ground truth
novel views using PyTorch3D. We rendered images at a res-
olution of 648x648 pixels, where the height of the human
region comprises approximately 70% of the image, result-
ing in a height of around 455 pixels.

SSHAQ is a dataset consisting of high-quality full-body
human images at a resolution of 1024x512. SSHQ covers
a wide range of races, clothing styles, and poses. Similar
to THuman2.0, we selected 30 subjects with only a single
image for evaluation. We remove the background, resize the
image to a resolution of 648x648 pixels, and reposition the
human to occupy approximately 70% of the image’s height,
ensuring it remains centered.

5.2. Metrics and Methods for Comparison

To evaluate our methods, we compare our method with
PIFu [43] and PaMIR [57] which are single image human
reconstruction methods including the texture that can be
inferred in a feed-forward manner. Additionally, we also
compare our results with a recent image-to-3D generation
method Magic123 [39] which is a per-subject optimization
method like ours. For the THuman2.0 dataset, since both
the input view and novel views have the ground truth, we
evaluate all methods on the rendered images in input view
and novel views using commonly used metrics: PSNR,
SSIM, LPIPS, and CLIP. For the SSHQ dataset that only
has the input image for evaluation, following the experi-
ments in Magic123, we adopt CLIP similarity to measure
the consistency between the input image and the rendered
novel view images and use LPIPS to measure the accuracy
between the input image and the rendered reference view.

For TeCH [16], a concurrent work to our method, re-
leased their code two weeks before the paper submission.
However, it still exhibits inconsistencies in the generated
areas. We provide a comparison with it in our suppl.

5.3. Evaluation

Results on the THuman2.0 dataset. Table | summarizes
the quantitative comparison of our proposed method with
the baseline methods on THuman2.0 dataset. PIFu and
PaMIR sample dense 3D points in 3D space and the sam-
pling points are projected onto the input image plane to
get the interpolated image features for occupancy predic-
tion. Then an explicit mesh is extracted using the Marching-
Cube[27] algorithm. For rendering, they predict a color
value for each mesh vertex. Similar to us, Magicl23 is a
per-subject optimization method that reconstructs the given
subject by lifting the 2D diffusion models to 3D using the
SDS loss. In Table 1, we demonstrate that our approach
surpasses all the baseline methods with respect to PSNR,
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Figure 5. Qualitative results on THuman2.0 and SSHQ dataset. Row 1&2 are THuman?2.0 samples, Row 3&4 are SSHQ samples. PIFu
and PaMIR tend to predict blurred rendering results, especially in the back view. Magic123 has difficulty in predicting consistent texture.
Compared with them, our methods accurately render texture-consistent and high-fidelity novel views, please Zoom in for the details.

LPIPS, and CLIP metrics while achieving the second-best
performance in terms of SSIM. This indicates that our re-
sults are more closely aligned with the ground truth.

In row 1&2 of Figure 5, we present qualitative results
of our method and baseline methods in the front view and
back view rendered images. Our method produces a clearer,
more detailed, and more photo-realistic front view and back
view than PIFu and PaMIR. Magic123 effectively preserves
the details of the input image by employing an RGB loss in
the input view. However, it generates over-saturated and
texture-inconsistent results in the back view due to the SDS
loss. In contrast, our results could produce a more realis-
tic result and consistent texture than Magic123 in different
views. Our method can also handle complicated textures
as the jacket shown in row 2 of Figure 5. For more visual
results, please refer to our supplementary materials.

Results on the SSHQ dataset. In addition to evaluating
the performance on the rendered dataset, we also evaluate
all methods using the real images from the SSHQ dataset.
As there is no ground truth for the novel view, we compute

Table 1. Quantitative comparison of our method with PIFu,
PaMIR, Magic123 on THuman2.0 and SSHQ datasets in terms of
SSIM, PSNR, LPIPS, and CLIP. (1 means higher is better, | means
lower is better.)

THuman2.0 SSHQ
SSIM 1 PSNR1 LPIPS] CLIPT‘LPIPSi CLIP?T

PIFu 0921 204 0.079 0.889| 0.068 0.873
PaMIR 0.925 21.0 0.072 0913 | 0.064 0.887
Magic123 0.903 18.8 0.099 0.910| 0.056 0.882
Ours 0923 214 0.063 0.932| 0.059 0.903

Method

the LPIPS metric in the front view and the CLIP similarity
in the novel view. The LPIPS metric measures how closely
the rendered front view matches the input image, while the
CLIP similarity evaluates the resemblance between the ren-
dered novel view and the input image. Table 5 shows the
quantitative results of our method and the baseline methods.
We are the second-best in LPIPS in the front view which is
marginally lower than Magic123, but we are the best in the



Table 2. Comparison between no back view synthesis (w/o back),
no visibility-aware patch consistency loss (w/o VPC), and full
model on THuman?2.0 dataset. (1 means higher is better, | means
lower is better.)

THuman?2
SSIM1T PSNRT LPIPS| CLIPt

w/o back & w/o VPC 0.9126 20.188 0.9051 0.0778
with back & w/o VPC 0.9220 21.27 0.9328 0.0658

Method

Full model 0.9231 21.35 0.9315 0.0634
Ps p
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Figure 6. Qualitative results between no texture-consistent back
view synthesis module and full model on THuman2.0 and SSHQ.

CLIP similarity, showing that our rendered novel views are
closer to the input image.

In rows 3 and 4 of Figure 5, we present a qualitative
comparison, which shows that our model is capable of pro-
ducing more detailed front and back views than PIFu and
PaMIR, as well as much more consistent texture with the in-
put image than Magic123. Furthermore, our model is even
able to handle various clothing types, such as loose coats,
boots, dresses, and hats, as shown in Figure 5. Although
our primary focus is not on geometry, we demonstrate an
improved back view normal map with enhanced details.

5.4. Ablation Study

We conduct ablation studies to analyze how the texture-
consistent back view synthesis module and the visibility-
aware patch consistency loss in the texture mapping and
refinement module affect the performance of our methods.
These ablation studies for quantitative results are conducted
on the THuman2.0 dataset, as it provides the ground truth
data in novel views. For the qualitative results, we test the
cases in both the THuman2.0 and SSHQ datasets.
Texture-consistent back view synthesis. To validate
the importance of using a texture-consistent back view syn-
thesis, we remove the synthesized back view image dur-
ing the texture optimization in the fine stage, which means
we remove the back view regularization in L4, and the
visibility-aware patch consistency loss L, that also relies
on the back view image. In this setup, our method is more
similar to previous image-to-3D methods. As shown in Ta-
ble 2, the performance drops significantly when the texture-
consistent back view image is removed, indicating that this

Input NoVPC WithVPC Input No VPC  With VPC

Figure 7. Qualitative results between no visibility-aware patch
consistency loss and full model on THuman2.0 and SSHQ.

design is critical for the single image 3D human free-view
rendering. The visual comparison is shown in Figure 6. It
can be observed that, without the texture-consistent back
view, the textures tend to be of significantly lower quality
and, most importantly, lack consistency with the input view.
Visibility-aware patch consistency loss. Additionally,
we validate the effectiveness of the proposed visibility-
aware patch consistency loss (VPC) by excluding it from
the optimization process. The performance also decreases
as shown in Table 2. The visual examples presented in Fig-
ure 7 show that without the VPC loss, severe color distor-
tion, as well as color inconsistency, would appear in the side
region. We attribute this inconsistency to the inability of the
SDS optimization to guide the model towards an optimal
convergence solution that best satisfies the front view.

6. Limitations

The depth and text-conditioned back view synthesis, along
with visibility-aware patch consistency loss, enable us to
achieve remarkable free-view human rendering with con-
sistent texture. However, there are a few limitations. 1) We
are unable to generate very impressive high-quality geome-
try. The resulting mesh exhibits coarse geometry in the hand
and foot regions. Besides, if the coarse stage produces ge-
ometry with concave areas or significantly incorrect poses,
the fine-stage mesh refinement cannot adequately compen-
sate for these errors. 2) Although the side and invisible
regions exhibit color-consistent predictions, their quality is
not as high as that of the front and back views, and they oc-
casionally contain some noise. 3) Similar to NeRF, our pro-
posed method is trained in a person-specific setting, which
requires over one hour to achieve training.

7. Conclusion

In this paper, we introduced a novel framework for sin-
gle image free-view 3D human rendering. We proposed a
module for texture-consistent and high-fidelity back view
synthesis, which is well-aligned with the input reference
image. The texture mapping module with visibility-aware
patch consistency loss is proposed for side and invisible re-
gion inpainting. Experiments on the THuman2.0 and SSHQ
demonstrated that the proposed model achieves state-of-the-
art performances on free-view image synthesis.
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ConTex-Human: Free-View Rendering of Human from a Single Image with
Texture-Consistent Synthesis

Supplementary Material

Overview. The supplementary material has the follow-
ing contents:

* Coarse stage implementation details

* Fine stage implementation details

* Compare with TeCH

* More visual comparison

* Visual results video demo

A. Coarse Stage Details

Pre-Process Given a single image of a specific person, we
first adopt the off-the-shelf background removal tool from
https://github.com/danielgatis/rembg to
attain the human foreground mask M. Based on the fore-
ground mask M, we create an RGBA image with 648x648
resolution and make sure that the valid human region occu-
pies approximately 70 % of the image’s height, ensuring it
remains centered.

Besides the mask, we also need the reference image nor-
mal map. In practice, we employ the designed normal esti-
mator N from ECONJ[53]. Note that, N is conditioned with
an optimized SMPL normal map. Therefore, our optimized
geometry also incorporates the human pose information.

Camera Setting. For the coarse stage, we optimize the neu-
ral radiance field(NeRF)[32] with 128%128 resolution. The
goal of the coarse stage is to supply a coarse geometry with
a roughly accurate human pose and boundary for back view
synthesis stage and fine stage. The elevation and azimuth
degree of the reference image is set to 0. as default.

For the camera setting during Score Distillation Sam-
pling, the elevation range is set to [-30°, 60°], and the az-
imuth range is set to [-180°, 180°]. The camera distance is
set to 3.8 as default, camera field of view (FOV) is set to
20° which is aligned with Zero-1-to-3[25].

3D Representation. We employ a multi-resolution hash
grid from Instant-NGP[33] as the 3D NeRF representation.
We use 16 levels of hash dictionaries of size 219, each en-
try is with a dimension 2 feature vector. The 3D grid res-
olution range from 2% to 2'2 with an exponential growth
rate of 1.447. A two-layer tiny MLP with 64 hidden units
is adopted to decode the concatenated features interpolated
from Instant-NGP to RGB color and volume density. The
background is a “white” solid color background. We sample
512 points along each ray.

Score Distillation Sampling. We sample images with a
batch_size of 4 each iteration for Score Distillation Sam-
pling.  'We sample the timestep ¢ ~ £(0.2,0.6), the

classifier-free guidance weight is set to 5.
The overall L.,qrse loss for the coarse stage can be
formulated as a combination of £§£3, Lmasks Lrgy and

»Cnormal:

‘Ccoarse = )\15233 + )\2£rgb + )\SEnarmal + )\4£mask¢
©)
where in practice \; = 1.0, Ay = 1000, A3 = 1000,
A4 = 1000, some additional constrain like density sparsity
and normal smoothness are also employed during optimiza-
tion. We optimize the coarse stage using Adam optimizer
for 3000 steps with a learning rate 5x1073.

B. Fine Stage Details

Geometry Optimization. We adopt DMTet[45] in the fine
stage, a hybrid SDF-Mesh representation, the DMtet reso-
lution is set to 256x256x256.

The overall L7 loss for the coarse stage can be formu-
lated as a combination of £7123, £,.,.sk, Lyg6 and Lyormai
E?jze = )\1 Enormal + )\2£mask + >\3£lap + >\4£smooth

(10)

where Lgmootn 18 the mesh normal constraint, £, is

the mesh laplacian constraint. In practice \; = 10000,

A2 = 50000, A3 = 1000, and A4 = 1000. We optimize

the geometry stage using Adam optimizer for 3000 steps

with a learning rate 1x10~2. In steps 2000~3000 step, A3
and A4 are set to 100 for more human geometry details.

Texture Field. We employ another multi-resolution hash
grid to represent the texture field. We use 14 levels of hash
dictionaries of size 219, each entry is with a dimension 2
feature vector. Same as the coarse stage, the 3D grid res-
olution ranges from 24 to 2'2. A two-layer tiny MLP with
64 hidden units is adopted to decode the concatenated fea-
tures to RGB color. The background is a “white” solid color
background.

Camera Setting. The camera setup of the fine stage is simi-
lar to the coarse stage except that the elevation degree range
is [-45°, 45°] and the image resolution is 648x648.

Score Distillation Sampling. We sample images with a
batch_size of 1 for each iteration for SDS. For Zero-1-to-
3 SDS, we sample the timestep ¢t ~ 4£(0.2,0.6), and the
classifier-free guidance weight is set to 5. For Stable Dif-
fusion SDS, we sample the timestep ¢ ~ 4/(0.02,0.5), and
the classifier-free guidance weight is set to 50.


https://github.com/danielgatis/rembg

Figure 8. Qualitative comparison with TeCH[16]results on THuman2.0 and SSHQ dataset. Compared with TeCH, our methods have
a consistent texture with input images. Row 1&3 are TeCH results, Row 2&4 are our results. Please Zoom in for the details.

The overall L%7  loss for the coarse stage can be for-

mulated as a combination of £Z123, £3¢ £, and L,,.:

rtex )\I‘C;ﬁ?) + )‘2‘6255 + )\3£7‘gb + MLype (A1)

fine
where in practice A\; = 0.002, Ao = 0.5, A3 = 10000, Ay =
10. We optimize the texture stage using Adam optimizer
for 4000 steps with a learning rate 1x10~3. To maintain the
front/back view details and generate consistent side view
texture, we optimize another 2000 steps with A\ = 0, Ay =
0, Az = 10000, A4 = 100.

C. Compare with TeCH

TeCH[16] is our concurrent work, which is also an
optimization-based method that employs Score Distillation
Sampling during the optimization process. As can be ob-
served in Figure 8, TeCH tends to predict a floating human
pose and always exhibits a misaligned texture in the hand
region. Most importantly, as shown in the back view, TeCH
shows an unreasonable texture compared with the input im-

age in terms of texture pattern, texture style, and wrong pre-
diction of the hat in the back head region.

D. More visual comparison

We provide more visual results in Figure 9 on THuman2.0
dataset and Figure 10 on SSHQ dataset. Please Zoom in For
more details.

E. Visual results video

We also provide two demo videos of free-view human ren-
dering on about 20 human subjects. The first one is a com-
parison video with PIFu, PaMIR, and Magic123. The sec-
ond one is a comparison video with TeCH. Each page in
the video contains several human cases, we recommend you
play the video repeatedly or drag the video progress bar for
more details.
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Figure 9. Qualitative comparison results on THuman2.0 dataset. Compared with them, our methods can render texture-consistent and
high-fidelity novel views.
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Figure 10. Qualitative results on SSHQ dataset. Compared with them, our methods can render texture-consistent and high-fidelity novel
views.
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